A NEW MULTIBEAM RECEIVER FOR KOSMA WITH SCALABLE FULLY REFLECTIVE FOCAL PLANE ARRAY OPTICS

T. Lüthi¹, D. Rabanus¹, U. U. Graf¹, C. Granet², and A. Murk³

¹ KOSMA, I. Physikalisches Institut, Universität zu Köln, Zülpicher Strasse 77, 50937 Köln, Germany ² CSIRO ICT Centre, PO Box 76, Epping NSW 1710, Australia ³ IAP, Universität Bern, Sidlerstrasse 5, 3012 Bern, Switzerland

Focal plane array optics

- \bullet Fully reflective \rightarrow avoids absorbtion and reflection losses of dielectric lenses
- Scalable in frequency and number of beams
- Large optical subassemblies machined monolithically \rightarrow no need for optical alignment
- Feedhorns optimized for near field operation

illumination mirror plate

3x3 beam focal plane unit

Array optics

- Beams are arranged on a rectangular gridFeedhorns and small illumination mirrors located
- in the gaps between the beams
- First fully reflective array scalable to an arbitrary number of beams

Optics unit-cell

Optics unit-cell

- \bullet Smooth-walled spline-profile feedhorn, optimized for a Gaussian beam 22 mm in front of the aperture, w₀=1.8 mm
- \bullet Illumination mirror: f=7.4 mm
- \bullet Facet mirror: f=21.2 mm

345 GHz prototype

• Gaussicity >98%

Acknowledgements:

This research is supported by Swiss National Science Foundation under grant PBBE2-106793, Deutsche Forschungsgemeinschaft under grant SFB 494, and by the ministry of science of the state Nordrhein-Westfahlen nus¹, U. U. Graf¹, niversität zu Köln e, PO Box 76, Epp