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Beyond the publications found on our web-page (see below) the work
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444-53175-0.
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Contact: Prof. Stephan Schlemmer
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http://www.astro.uni-koeln.de/labastro

We acknowledge continuous funding through German Science Foundation,
DFG. Many thanks go to all current and former group members who made and
make this work possible.



Molecular Astrophysics
Schlemmer Group

THMP“

l’L m”

"

Physical Parameters Synthesis
& &
Abundances Methods
Observation ]

& Experiments
Modelling & Theory
Line Positions o Spectroscopy

Intensities CoI_I|§|ons
Rate Coefficients Reactivity
Models

Data Bases

In the Molecular Astrophysics Group we investigate the quantum physics of
interstellar molecules. We develop special techniques to hunt for new
molecules in the laboratory and in space. We provide molecular parameters
and spectral information to help astrophysicists predict their observations.
To do this we follow the scientific approaches outlined below:
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Scientific motivation: The life cycle of stars and planetary systems like our
own solar system is accompanied by the presence of a large variety of
molecules. Their observed spectra teach us about the physical conditions
(pressure, temperature) in space. The presence of small molecules, radicals
or ions or complex organic molecules provides information on the
evolutionary stage of the interstellar medium. Our group measures and
calculates fundamental data on the spectroscopy of these molecules and
investigates how they are formed and destroyed.

(Figure courtesy: http://herschel.jpl.nasa.gov)

For Students:
We offer projects at all levels of knowledge, lab courses for students and
pupils, thesis projects at the Bachelor and Master level. Students are
thoroughly guided by team members throughout their work.
Doctoral students from our group enjoy the competitive science projects,
the international recognition of their work and the multinational
environment of the Cologne Center for THz Spectroscopy (CCTS).
The scientific education in our group prepares our graduates for
challenging future careers in research, academic and commercial areas.
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In this brochure we briefly introduce our scientific approaches.
Laboratory instruments are shown in their principle and in pictures.
Experimental methods are described in example measurements.
Molecules of current interest are listed graphically.

Recent results are presented and references to publications are given.
Below current group members carrying out the research are listed together
with our scientific methods.

THz Absorption Sven Thorwirth, Frank Lewen, Holger Miiller,
Spectroscopy Luis Bonah, Mariyam Fatima

E . . . " . =
THz Emission Ernest Michael, Mariyam Fatima, Bettina Heyne

Spectroscopy

ped Pulse

ctroscopy Mariyam Fatima, Bettina Heyne, Luis Bonah
Spectroscopy & Oskar Asvany, Philipp Schmid, Sven Thorwirth,

Weslley Silva, Divita Gupta, Thomas Salomon,

Reactions in Traps
P Marcel Bast, Ernest Michael

Jet Spectroscopy Sven Thorwirth, Thomas Salomon

Theory, Modelling Sven Thorwirth, Holger Miller,
& CDMS Stefan Brackertz, Luis Bonah

More detailed information can be found on our webpage or just contact us.
The people listed above are associated with the specific methods used.



THz Absorption Spectroscopy
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Many molecules have their fingerprint-
like spectra in the sub-millimeter
wavelength region, where many radio
telescopes such as ALMA are operated
and are hunting for them.

Our absorption experiments cover the
range from 0.030 — 2 THz. Such a wide
range is mandatory to generate complete
line predictions for complex molecules.
Current research includes the
spectroscopy of isotopically substituted or

hot molecules.
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Advanced THz Techniques
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massively simplifies finding

related transitions and under-
standing the spectrum. The double-
resonance double-modulation
method immediately realizes the
difference between the spectrum
with and without pump source. The
resulting spectrum shows only
transitions that share an energy
level with the pump transition.
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For double-modulation double-
resonance we uses a second
radiation source, the so-called
pump source. Its frequency is set
to a known transition which
results in all transitions, that
share an energy level with this
pump transition, splitting into
two less intense transitions. This
massively  simplifies  finding
related transitions and under-
standing the spectrum.
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Loomis-Wood

plots are a visual
aid for assigning
quantum num-
bers to lines in
the  spectrum.
Adjacent  tran-
sitions of a series
are plotted ab-
ove each other
for reference.

Transitions of one series appear as almost straight lines. This makes assignments faster

and more confident. We are actively developing our own Loomis-Wood software

called LLWP. More information can be found on its website
https://llwp.astro.uni-koeln.de/




Intensity [14V]

Chirped Pulse Spectroscopy

FTMW
Radiation Heterodyne
Source Absorption cell Receiver
AWG| fo —”9-» .— F
\/o )
T L
0]
Excitation

A short chirped pulse or a single tone
is generated by an arbitrary
waveform generator (AWG) and,
after amplification, coupled into a
molecular sample cell. The molecules
are coherently excited and polarized.
The free induction decay (FID) of this
signal is recorded with a heterodyne
detector and Fourier transformed
into a spectrum.
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Like in NMR a macroscopic polarization of a
molecular ensemble is created, resulting in a
free induction decay (FID). As a result, broad
band spectra as well as the temporal
behavior, e.g. due to collisions, can be
determined with pus resolution. The spectra of
complex molecules of astrophysical interest
are recorded in several experimental setups
operating in the 12-26 and 75 -100 GHz
range.
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Emission Spectroscopy
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Liquid N, is used to detect the
warm molecular emission in front
of a «cold (77 K) blackbody
background. For absolute intensity
calibration a room-temperature
emitter is used. Both receivers, at
100 and 300 GHz, send an
intermediate frequency (IF) into an
IF-processor electronics. The IF
signal is amplified and
subsequently recorded by an
extended FFT-spectrometer.

Our laboratory emission spectro-
meters employ heterodyne detection
which is commonly used as front ends
of radio telescopes. These
instruments record molecular line
emission over a wide frequency range.
Spectra with highly reliable intensity

information result from these

experiments.
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First emission spectrum of methyl cyanide,
detected at 315 GHz using the SIS receiver.
Next to the rotational spectrum of the
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Infrared Jet Spectroscopy

Jet Spectrometer
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Reactions in lon traps

Reactions in Traps

Cryogenic

ion trap instruments

allow to study the kinetics, i.e.

Mass temporal evolution, of ion-mole-
Source Tra !
P Spectrometer cule reactions under controlled

N == [\ »

\ | e— U> conditions and at low temp-
eratures. The determined rate
coefficients are important in
reaction networks related to

interstellar chemistry. Cold chemi-
stry is also of fundamental interest
in molecular physics.

lon-Molecule Reactions of Interest

Examples
* Deuteration reactions: H;*+HD <& H,D"+H,
* Nuclear spin effects: o/p-Hy*+o/p-H, <> o/p-Hy*+0o/p-H,
* Hydrogenation reactions: N*+o/p-H, - NH'+H
* Proton transfer reactions: Hy*+0, <> O,H*+H,
* Ternary association reactions: CD*+2He <> He-CD*+He
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Measured time evolution of the N* + H,
reaction system at 17.3 K. The number
density is [n-H,] = 2.8 x 101! cm?3.
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at 4 K in a high density bath of He.
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Kinetics measurement:
Consecutive ternary attachment of He to CD*.



Infrared Action Spectroscopy

Action Spectroscopy

Radiation

Mass
Source Trap Spectrometer
U =) U

Molecules of Interest

_ _ + +
00O 9O
propynylidynium deuterated

+ acetylene cation
ethynyl cation
L X

.«

+

protonated methane

Spectroscopy in ion traps offers the
advantage of cooling, mass selection
and high sensitivity. With typically 10*
trapped ions, the use of action spectro-
scopic schemes is mandatory. In recent
years, new action spectroscopy
schemes have been developed in
Cologne, enabling broadband as well
as high-resolution vibrational and ro-
vibrational spectroscopy of any ion.
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Left: FELion cryogenic
ion trap instrument

Right: 22-pole ion
trap, the heart of the
trapping experiment.
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THz Action Spectroscopy

Molecular ions play an important
role in interstellar chemistry. High-

Action Spectrosco
P Py resolution rotational spectra are

Radiation Mass needed to identify them in the
Source N Trap [\Spectrometer interstellar medium. We have
SL U | } U> > developed and use sensitive action

spectroscopic schemes to record
the rotational fingerprint spectra of
mass-selected, cold molecular ions

stored in cryogenic ion traps.
Molecules of Interest
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action spectroscopy on molecular ions.
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attachment of He atoms on the example of CF*. using a double-resonance scheme.



Theory of molecular dynamics

A theoretical understanding of the molecular dyna-

mics helps to interpret experimental results. The

topics in our group include:

* Automated assignment of experimental spectra

* Numerical methods to reconstruct energy term
diagrams from spectra

* Description of internal dynamics of extremely
flexible molecules, the “superrotor”

* Semi-classical description of molecular states with
high angular momenta

* Nuclear spin symmetry in molecular spectroscopy
and molecular collisions

Semi-classical rotations
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For other researchers:

We make our unique instrumentation available to colleagues
throughout the world, thanks to funding as a DFG core facility:
Cologne Center for THz Spectroscopy (CCTS)

You can conduct your research using our experiments. We are supplying
assistance by well trained specialists for the experiments and for the
analysis. Data recorded with our instruments are intended to be
published and made available in the Cologne Data Base for Molecular
Spectroscopy (CDMS). The Figure shows the coverage and resolution of

our light sources.
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High-Resolution Spectroscopy: A Curse and a Blessing

A
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Accurate bond strengths and

COH the molecular structure are
derived from high-reso-lution
H measurements. The light
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Misslons for Astrophysics

The cosmic cycle of star and planet formation is linked to
molecular ions. Laboratory spectra for Missing lons
(Misslons) which are key players in interstellar chemistry

SRR are the subject of this ERC advanced grant project.
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c* H.+ o
2
1 c.I Tc_r, 1 C.r
c H, O

The new method of leak-out-
spectroscopy (LOS) in cryogenic ion
traps is the tool which enables us to
record spectra of the missing ions.
The title page of J.Phys.Chem.A
shows the sequence of events
acting in the LOS technique. A
patent on this method is pending.

Removing structural and nuclear
spin isomers or other isobaric
species from the finite ensemble of
trapped ions gives us a powerful
handle in assigning the very dense
spectra of the ions of interest.

Much of the ion chemistry starts
with the omnipresent hydrogen.
The Figure shows initial steps of
interstellar ion chemistry where
the initial H;* ion acts as a
universal proton donor.

Elusive molecules like protonated
methane, CH.* and protonated
methane are predicted but could
not be identified in space because
laboratory spectra are  still
(largely) missing.
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