skip to content

Theoretical Astrophysics group Cologne - TAC

Our research deals with the numerical modelling of the star formation process by means of high-performance, 3D, magneto-hydrodynamical (MHD) simulations. The simulations cover large spatial scales from ISM physics on kpc scales over molecular clouds on scales of 10 - 100 pc to star forming filaments on (sub-) pc scales and finally to protostellar discs and jets on scales of 10 - 1000 AU.

In our research group we use several tools like the (M)HD codes FLASH, GADGET, GANDALF, the astrochemical code KROME, 3D-PDR or radiative transport codes like RADMC-3D and POLARIS.

Prof. Dr. Stefanie Walch-Gassner is the head of the SILCC project (SImulating the life Cyle of molecular Clouds), a collaboration of several European astrophysical institutes, which has set the aim to model the formation, evolution, and dispersal of molecular clouds in 3D, MHD simulations with particular focus on a detailed astro-chemical modelling and the inclusion of various feedback processes.

Contact information:

  • Phone: (+49|0) 221 / 470 - 3497
  • Fax: (+49|0) 221 / 470 - 5162
  • Email: walch [at]

Consultation hours

upon agreement in Room 1.14, Building 312 

SILCC-FUV: The Influence of Far-Ultraviolet Radiation on Star Formation and the Interstellar Medium

Figure 1. Overview of the simulated ISM. Shown are the edge-on views of the total gas (Σgas, 1st panel), molecular hydrogen (ΣH2, 4th panel), and ionized hydrogen (ΣH+, 5th panel) column densities, as well as mass-weighted gas (Tgas, 2nd panel) and dust (Tdust, 3rd panel) temperatures and ionizing photon energy density (eγ, 6th panel), the effective G0 field (Geff, 7th panel), and cosmic ray energy density (eCR, 8th panel) in projection. The star-forming galactic ISM is concentrated around the midplane. White circles in the 1st panel indicate active star clusters.