zum Inhalt springen

What dominates the energy budget of molecular cloud sub-structures?

1 / 2
  • Figure 1: The hierarchical scales in the SILCC deep-zoom simulations. The larger box shows the cloud MC1-MHD, with two dynamically different regions shown as separate panes. The density slice, with the planar velocity field shown using arrows, suggests that MC1-MHD-Ra is more quiescent, gravity dominated; while MC1-MHD-Rc is being compressed by larger scale flows. The black contours in each case show one larger-scale dendrogram structure.
  • Figure 2: The virial balance of different dendrogram sub-structures, with the structure of the figure adapted from Dib et al., 2007. The x-axis represents the virial ratio, while the y-axis represents the sum of the gravitational (W) and the kinetic, thermal, and magnetic terms (ΘVT). The different quadrants represent conditions of being bound/unbound for the forming structures. Each point, color coded by their magnitude-wise largest energy term, represents a single dendrogram sub-structure. Almost all bound sub-structures are dominated by the interplay of ram pressure (light blue) and gravity (red).

Theoretical Astrophysics group Cologne - TAC

Our research deals with the numerical modelling of the star formation process by means of high-performance, 3D, magneto-hydrodynamical (MHD) simulations. The simulations cover large spatial scales from ISM physics on kpc scales over molecular clouds on scales of 10 - 100 pc to star forming filaments on (sub-) pc scales and finally to protostellar discs and jets on scales of 10 - 1000 AU.

In our research group we use several tools like the (M)HD codes FLASH, GADGET, GANDALF , the astrochemical code KROME, 3D-PDR or radiative transport codes like RADMC-3D and POLARIS.

Prof. Dr. Stefanie Walch-Gassner is the head of the SILCC project (SImulating the life Cyle of molecular Clouds), a collaboration of several European astrophysical institutes, which has set the aim to model the formation, evolution, and dispersal of molecular clouds in 3D, MHD simulations with particular focus on a detailed astro-chemical modelling and the inclusion of various feedback processes.

Contact information:

  • Phone: (+49|0) 221 / 470 - 3497
  • Fax: (+49|0) 221 / 470 - 5162
  • Email: walch [at] ph1.uni-koeln.de

Consultation hours

upon agreement in Room 1.14, Building 312